skip to main content


Search for: All records

Creators/Authors contains: "Armstrong, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Echinoids are key components of modern marine ecosystems. Despite a remarkable fossil record, the emergence of their crown group is documented by few specimens of unclear affinities, rendering their early history uncertain. The origin of sand dollars, one of its most distinctive clades, is also unclear due to an unstable phylogenetic context. We employ 18 novel genomes and transcriptomes to build a phylogenomic dataset with a near-complete sampling of major lineages. With it, we revise the phylogeny and divergence times of echinoids, and place their history within the broader context of echinoderm evolution. We also introduce the concept of a chronospace – a multidimensional representation of node ages – and use it to explore methodological decisions involved in time calibrating phylogenies. We find the choice of clock model to have the strongest impact on divergence times, while the use of site-heterogeneous models and alternative node prior distributions show minimal effects. The choice of loci has an intermediate impact, affecting mostly deep Paleozoic nodes, for which clock-like genes recover dates more congruent with fossil evidence. Our results reveal that crown group echinoids originated in the Permian and diversified rapidly in the Triassic, despite the relative lack of fossil evidence for this early diversification. We also clarify the relationships between sand dollars and their close relatives and confidently date their origins to the Cretaceous, implying ghost ranges spanning approximately 50 million years, a remarkable discrepancy with their rich fossil record. 
    more » « less
  2. null (Ed.)
    Extrusion-based bioprinting is the most common printing technology used in regenerative medicine. Despite recent technological advances, a pressing challenge for extrusion printing is low spatial resolution, which limits the functionality of printed constructs. One of the reasons for the low spatial resolution is a lack of process monitoring and control strategies to monitor fabrication and correct for print errors. Few research efforts implement process control and investigate the relationship between extrusion process parameters and printing fidelity. The lack of understanding between process parameters and print results ultimately limits the complexity of the possible structures. For example, fabrication of structures whose topologies vary spatially within the part is not possible without advanced process control. Here we enable fabrication of advanced spatially graded structures by implementing process monitoring and control strategies. We develop material models to better understand the relationship between process parameters and printing outcomes. We also present an experimental procedure to generate a process map that provides insight into the regions of the processing space that produce the desired extrusion features (e.g., width of the filament). After generation of a process map and material models, we implement a process monitoring and control strategy that measures the feature error and intelligently updates the process control inputs to reduce defects and improve spatial fidelity, which will lead to better functionality of the final construct. 
    more » « less
  3. Abstract

    Most terrestrial plants form mycorrhizas, but a number of agricultural plants, including the Brassicaceae, are non‐mycorrhizal. Brassicaceae can still be colonized by arbuscular mycorrhizal fungi (AMF), but species likeArabidopsis thalianaexperience growth reductions following AMF colonization at similar magnitude to that of fungal pathogen infections and lack key genes necessary for nutrient exchange.Arabidopsisalso produces specific secondary compounds via the modification of tryptophan, including indolic glucosinolates (IGs), which have anti‐fungal properties and may therefore be involved in reducing AMF colonization. This study therefore addressed whether the ability to produce IGs facilitates resistance to AMF colonization and growth suppression. We challenged with AMF inoculation transgenicArabidopsislines which produce no or enhanced IGs levels in comparison with the wild‐type. Arbuscular mycorrhizal fungal inoculation suppressed the development of IG‐removed plants, activated their pathogen‐response defenses, and enhanced AMF vesicle colonization of their root systems. Arbuscular mycorrhizal fungi had no detrimental effects on wild‐type or IG‐enhanced plants. Using BLAST to identify IG orthologs across 29 Brassicales, we also show that non‐mycorrhizal species possess orthologous proteins for IG biosynthesis toArabidopsiswhich AMF‐associated Brassicales lack. In conclusion, the IG production pathway appears to serve an important and previously unknown role in reducing AMF colonization inArabidopsisand may serve similar functions in non‐host Brassicales more broadly.

     
    more » « less
  4. A bstract A search for Higgs boson pair production in events with two b -jets and two τ -leptons is presented, using a proton–proton collision dataset with an integrated luminosity of 139 fb − 1 collected at $$ \sqrt{s} $$ s = 13 TeV by the ATLAS experiment at the LHC. Higgs boson pairs produced non-resonantly or in the decay of a narrow scalar resonance in the mass range from 251 to 1600 GeV are targeted. Events in which at least one τ -lepton decays hadronically are considered, and multivariate discriminants are used to reject the backgrounds. No significant excess of events above the expected background is observed in the non-resonant search. The largest excess in the resonant search is observed at a resonance mass of 1 TeV, with a local (global) significance of 3 . 1 σ (2 . 0 σ ). Observed (expected) 95% confidence-level upper limits are set on the non-resonant Higgs boson pair-production cross-section at 4.7 (3.9) times the Standard Model prediction, assuming Standard Model kinematics, and on the resonant Higgs boson pair-production cross-section at between 21 and 900 fb (12 and 840 fb), depending on the mass of the narrow scalar resonance. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  5. A bstract A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron–muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb − 1 at $$ \sqrt{s} $$ s = 7 TeV and about 20 fb − 1 at $$ \sqrt{s} $$ s = 8 TeV for each experiment. The combined cross-sections are determined to be 178 . 5 ± 4 . 7 pb at $$ \sqrt{s} $$ s = 7 TeV and $$ {243.3}_{-5.9}^{+6.0} $$ 243.3 − 5.9 + 6.0 pb at $$ \sqrt{s} $$ s = 8 TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be R 8 / 7 = 1 . 363 ± 0 . 032. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $$ {m}_t^{\textrm{pole}}={173.4}_{-2.0}^{+1.8} $$ m t pole = 173.4 − 2.0 + 1.8 GeV and $$ {\alpha}_{\textrm{s}}\left({m}_Z\right)={0.1170}_{-0.0018}^{+0.0021} $$ α s m Z = 0.1170 − 0.0018 + 0.0021 . 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  6. A<sc>bstract</sc>

    This paper presents a search for hypothetical massive, charged, long-lived particles with the ATLAS detector at the LHC using an integrated luminosity of 139 fb1of proton–proton collisions at$$ \sqrt{s} $$s= 13 TeV. These particles are expected to move significantly slower than the speed of light and should be identifiable by their high transverse momenta and anomalously large specific ionisation losses, dE/dx. Trajectories reconstructed solely by the inner tracking system and a dE/dxmeasurement in the pixel detector layers provide sensitivity to particles with lifetimes down to$$ \mathcal{O} $$O(1) ns with a mass, measured using the Bethe–Bloch relation, ranging from 100 GeV to 3 TeV. Interpretations for pair-production ofR-hadrons, charginos and staus in scenarios of supersymmetry compatible with these particles being long-lived are presented, with mass limits extending considerably beyond those from previous searches in broad ranges of lifetime.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  7. Abstract The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with Geant4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPU-intensive component of the simulation—the calorimeter shower simulation—with faster simulation methods. Here, AtlFast3, the next generation of high-accuracy fast simulation in ATLAS, is introduced. AtlFast3 combines parameterized approaches with machine-learning techniques and is deployed to meet current and future computing challenges, and simulation needs of the ATLAS experiment. With highly accurate performance and significantly improved modelling of substructure within jets, AtlFast3 can simulate large numbers of events for a wide range of physics processes. 
    more » « less
  8. Abstract The accurate simulation of additional interactions at the ATLAS experiment for the analysis of proton–proton collisions delivered by the Large Hadron Collider presents a significant challenge to the computing resources. During the LHC Run 2 (2015–2018), there were up to 70 inelastic interactions per bunch crossing, which need to be accounted for in Monte Carlo (MC) production. In this document, a new method to account for these additional interactions in the simulation chain is described. Instead of sampling the inelastic interactions and adding their energy deposits to a hard-scatter interaction one-by-one, the inelastic interactions are presampled, independent of the hard scatter, and stored as combined events. Consequently, for each hard-scatter interaction, only one such presampled event needs to be added as part of the simulation chain. For the Run 2 simulation chain, with an average of 35 interactions per bunch crossing, this new method provides a substantial reduction in MC production CPU needs of around 20%, while reproducing the properties of the reconstructed quantities relevant for physics analyses with good accuracy. 
    more » « less